A Parameter Choice Method for Tikhonov Regularization

نویسندگان

  • LIMIN WU
  • Daniela Calvetti
چکیده

Abstract. A new parameter choice method for Tikhonov regularization of discrete ill-posed problems is presented. Some of the regularized solutions of a discrete ill-posed problem are less sensitive than others to the perturbations in the right-hand side vector. This method chooses one of the insensitive regularized solutions using a certain criterion. Numerical experiments show that the new method is competitive with the popular L-curve method. An analysis of the new method is given for a model problem, which explains how this method works.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a generalization of Regińska's parameter choice rule and its numerical realization in large-scale multi-parameter Tikhonov regularization

A crucial problem concerning Tikhonov regularization is the proper choice of the regularization parameter. This paper deals with a generalization of a parameter choice rule due to Regińska (1996) [31], analyzed and algorithmically realized through a fast fixed-point method in Bazán (2008) [3], which results in a fixed-point method for multi-parameter Tikhonov regularization called MFP. Like the...

متن کامل

Identifying an Unknown Source in the Poisson Equation by a Modified Tikhonov Regularization Method

In this paper, we consider the problem for identifying the unknown source in the Poisson equation. A modified Tikhonov regularization method is presented to deal with illposedness of the problem and error estimates are obtained with an a priori strategy and an a posteriori choice rule to find the regularization parameter. Numerical examples show that the proposed method is effective and stable....

متن کامل

On the Choice of the Tikhonov Regularization Parameter and the Discretization Level: A Discrepancy-Based Strategy

We address the classical issue of appropriate choice of the regularization and discretization level for the Tikhonov regularization of an inverse problem with imperfectly measured data. We focus on the fact that the proper choice of the discretization level in the domain together with the regularization parameter is a key feature in adequate regularization. We propose a discrepancy-based choice...

متن کامل

Determination of an Unknown Source in the Heat Equation by the Method of Tikhonov Regularization in Hilbert Scales

In this paper, we consider the problem for determining an unknown source in the heat equation. The Tikhonov regularization method in Hilbert scales is presented to deal with ill-posedness of the problem and error estimates are obtained with a posteriori choice rule to find the regularization parameter. The smoothness parameter and the a priori bound of exact solution are not needed for the choi...

متن کامل

The Tikhonov Regularization Method in Hilbert Scales for Determining the Unknown Source for the Modified Helmholtz Equation

In this paper, we consider an unknown source problem for the modified Helmholtz equation. The Tikhonov regularization method in Hilbert scales is extended to deal with ill-posedness of the problem. An a priori strategy and an a posteriori choice rule have been present to obtain the regularization parameter and corresponding error estimates have been obtained. The smoothness parameter and the a ...

متن کامل

Improving the Spatial Solution of Electrocardiographic Imaging: A New Regularization Parameter Choice Technique for the Tikhonov Method

The electrocardiographic imaging (ECGI) inverse problem is highly ill-posed and regularization is needed to stabilize the problem and to provide a unique solution. When Tikhonov regularization is used, choosing the regularization parameter is a challenging problem. Mathematically, a suitable value for this parameter needs to fulfill the Discrete Picard Condition (DPC). In this study, we propose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003